

How to use an ESP-01S module

How Does It Work?

 The ESP8266 can be controlled from your local Wi-Fi network or from the internet (after port

forwarding). The ESP-01 module has GPIO pins that can be programmed to turn an LED or a

relay ON/OFF through the internet. The module can be programmed using an Arduino/USB-to-
TTL converter through the serial pins (RX, TX).

Connecting the Hardware to Your ESP8266

 We can either use a USB-to-TTL converter or use an Arduino to program the ESP8266. Here

are three methods you can follow to upload the code to ESP8266 — select the one that suits you

best. Refer to the following diagrams for each and set up the hardware accordingly.

Pins are arranged in two rows, having 4 on each row. Some models have pin description on the
PCB, which make it simple. On the top row you can find following pins from the left to the right:

1. GND (Ground from power supply)
2. GPIO2 (Digital I/O programmable)
3. GPIO0 (Digital I/O programmable, also used for BOOT modes)
4. RX – UART Receiving channel

On the bottom (second row) you can find:

1. TX – UART Transmitting channel
2. CH_PD (enable/power down, must be pulled to 3.3v directly or via resistor)
3. REST – reset, must be pulled to 3.3v)
4. VCC -3.3v power supply

Power supply and current consumption

 All esp8266 arduino compatible modules must be powered with DC current from any kind of
source that can deliver stable 3.3V and at least 250mA. Also logic signal is rated at 3.3v and the
RX channel should be protected by a 3.3v divisor step-down. You should be careful when using
this module with Arduino or other boards which supplies 5v, because this module usually do not
come with overpower protection and can be easily destroyed.

Here is the declared power consumption from Espressif:

If you are going to use ESP-01 in a project that is powered by batteries or by solar power it is

mandatory to know everything about ESP8266 arduino Sleep modes. Current version offers 3

different sleep modes which can be triggered programmatically. ESP8266WiFi library offers

specific functions to call sleep modes which can take settings parameters that change the callback

jobs after wake-up like waking up with RF module powered off or on.

The most important mode is DEEP_SLEEP because of the very low power consumption rates

during sleep. Deep sleep mode is very common in projects that do data-logging at specific
intervals and idle between measurements.

In order to take advantage of this mode when using esp8266 arduino compatible module, ESP-01

standard, you need to make a little workaround and connect REST pin with the GPIO16 pin

(which is not available in default 6 six pins).

Here is an example how to do it

After doing this connection you can use the following command to trigger the deep sleep mode:

ESP.deepSleep(sleepTimeInSeconds * 1000000);

Talking with ESP-01 (AT / LUA / Arduino)

ESP8266-01 gives you many methods to communicate with it through the RX/TX pins or over the

air (OTA). The differences are not only in hardware but can be also in what kind of firmware is

flashed out of the box. No matter what firmware comes default installed, you should be able to

flash your preferred firmware by following the firmware flashing instruction from the datasheet.

This module can be programmed using LUA code, Arduino code or directly through AT

commands and this gives us more freedom when embedding this device in our projects. Also,

there are few python firmware modes but i haven’t had the chance to test them. I personally

choose to work with Arduino because of the past experience and tones of libraries available.

As it comes, out of the box, this module is ready to talk via AT commands without any other extra

settings or configurations. There are many software applications which you can use to

communicate via AT and have tones of readymade tools and functions which will make

everything easier. I used ESPlorer and i totally recommend it, you can find it here. After booting,

to be able to use AT commands, module should display “ready” on the serial monitor.

Few basic AT commands examples:

AT – response OK

AT+CWLAP – list nearby available WiFi networks

AT+GMR – check the firmware version

AT+CWJAP=” <access_point_name>”,”<password>” – join WiFi network using credentials

AT+CIFSR – get current allocated IP address

In order to be able to talk with the ESP8266 arduino compatible module, you need to choose a

way to connect it with your computer. You can communicate with the module via standard Serial
communication RS232 by using an Arduino board as a proxy/bridge

Arduino Uno differs from all preceding boards in that it does not use the FTDI USB-to-serial

driver chip. Instead, it features the Atmega16U2 (Atmega8U2 up to version R2) programmed as a

USB-to-serial converter. In order to use Arduino as a bridge, first you need to load an empty

program on it. After doing that, you need to make the following connections in order to work:

UNO ESP-01S

RX RX
TX TX
3.3V 3.3V
GND GND
RST RST

CH_PD OR EN 3.3V

 After that you should be able to see data and send AT commands in Serial Monitor by

selecting Arduino’s COM port, setting a proper baudrate, default should be 115200, and make the

additional settings to read “Both NL & CR

 Firmware Over The Air (FOTA) solution in every embedded DIY or commercial project is a

highly desirable if not a required feature today, when every project core needs to scalable. So the

possibility to upload your code from a remote computer via Wi-Fi connection rather then Serial is

a high advantage in every project. First you need FOTA needs needs prerequisites. First firmware

upload needs to be done via Serial, and if the OTA routines are correctly implemented in the

program next uploads can be done over the air.

 Because the module needs to be exposed wirelessly, the chance to being hacked and loaded with

maleficent code exists. You can improve your security by setting custom port and password.

Check functionalities from the ArduinoOTA library that may help you to boost security. Because

of the complexity of this procedures we will cover the full story in a future article, but for now be

aware that this option exists and it works pretty good.

 Another way to connect the esp8266 arduino module to computer is to use a TTL or FTDI USB-

to-serial dedicated module. There are plenty of them on the market and there are quite cheap, but

make no mistake, here quality does matter. You may encounter problems when working with it if

ending up with a cheap one because of the differences in connections and also driver

compatibility.

Most used TTL / FTDI converters chips are CH340G, CP2102 and FT232RL. I personally used

the first two ones and i have no problem when loading programs. Following connections need to
be done:

ESP-01S TTL/FTDI

RX TX

TX RX

VCC 3.3V

GND GND

RST 3.3V/Float

CH_PD OR EN 3.3V

I highly recommend you not to use the TTL 3.3v power supply because most of them are not able

to provide enough power to handle the esp8266 arduino compatible device. The embedded

voltage regulator used on this module are not the happiest choice and you may get in trouble if it

cannot support ESP peeks. If you choose to use an external power supply don’t forget to setup a

common ground in order to have a working circuit.

You can find TTL modules that have TX rated at 3.3v, if not, you shod step-down the TX channel

to protect your ESP-01 module. You can see bellow a wiring scheme between ESP-01 and
CP2102 which includes a reset button connected to ground, and also GPIO0 for boot switch.

Here is a simple 3.3v divisor sketch using resistors:

In order to setup your Arduino IDE to work with your esp8266 arduino compatible module you

need to make the following steps:
1. Connect your ESP8266-01 Module to PC

2.Open your Arduino IDE

3.Go to File -> Preferences

4.Add this link to Additional Board Manager

5.Go to Tools -> Board Manager

6.Find ESP8266 board set and activate it

7.Select Generic ESP8266 board from Tools->Boards

8.Choose your programmer COM port

9.You are ready to go!

Now, to be able to download the program to your ESP-01 module, you first need to put your

device in the proper BOOT mode (Download code from UART). ESP8266-01 have the following
boot modes:

After resetting the module in Download code from UART you should see a message containing

“boot mode: [1,6]” in the serial monitor, if you are on the correct baudrate. A wrong baudrate

setting will display garbage text / characters or nothing at all. After that you should be able to

upload your sketch to ESP8266. When upload is done, module should reset itself. Don’t forget to

pull HIGH the GPI0 or the module will get in Download mode again and you will not be able to

see it working. The module can be rebooted at any time by pulling REST pin to LOW. After each

reset it will follow the boot sequence and program loading.

MTDO /
GPIO15

GPIO0 GPIO2 Mode Description

L L H UART Download
code from
UART

L H H Flash Boot from
SPI Flash

H X X SDIO Boot from
SD-card

 Once the ESP8266 board is installed and activated in Arduino IDE, you will be able to include

all ESP WiFi libraries and examples that comes with the package. The most used library is

ESP8266WiFi which offers many implementation examples like WiFiClient, WiFiServer,

WiFiAccessPoint etc. You can find allot of projects examples over the internet, I for example,

found great ideas on arduino.cc projecthub. Here is a simple Arduino blink example which you
can use to test the esp module with the built in LED:

/*

 ESP8266 Arduino Blink by Simon Peter

 Blink the blue LED on the ESP-01 module

 This example code is in the public domain

 The blue LED on the ESP-01 module is connected to GPIO1

 (which is also the TXD pin; so we cannot use Serial.print() at the same time)

 Note that this sketch uses LED_BUILTIN to find the pin with the internal LED

*/

void setup() {

 pinMode(LED_BUILTIN, OUTPUT); // Initialize the LED_BUILTIN pin as an output

}

// the loop function runs over and over again forever

void loop() {

 digitalWrite(LED_BUILTIN, LOW); // Turn the LED on (Note that LOW is the voltage level

 // but actually the LED is on; this is because

 // it is acive low on the ESP-01)

 delay(1000); // Wait for a second

 digitalWrite(LED_BUILTIN, HIGH); // Turn the LED off by making the voltage HIGH

 delay(2000); // Wait for two seconds (to demonstrate the active low LED)

}

Off course, after that you can try a more complex example by loading a ESP8266 Arduino WiFi

Client example program that sends data via WiFi to the data.spakfun.com iot platform:

/*

 * This sketch sends data via HTTP GET requests to data.sparkfun.com service.

 *

 * You need to get streamId and privateKey at data.sparkfun.com and paste them

 * below. Or just customize this script to talk to other HTTP servers.

 * ESP8266 Arduino example

 */

#include <ESP8266WiFi.h>

const char* ssid = "your-ssid";

const char* password = "your-password";

const char* host = "data.sparkfun.com";

const char* streamId = "....................";

const char* privateKey = "....................";

void setup() {

 Serial.begin(115200);

 delay(10);

 // We start by connecting to a WiFi network

 Serial.println();

 Serial.println();

 Serial.print("Connecting to ");

 Serial.println(ssid);

 WiFi.begin(ssid, password);

 while (WiFi.status() != WL_CONNECTED) {

 delay(500);

 Serial.print(".");

 }

 Serial.println("");

 Serial.println("WiFi connected");

 Serial.println("IP address: ");

 Serial.println(WiFi.localIP());

}

int value = 0;

void loop() {

 delay(5000);

 ++value;

 Serial.print("connecting to ");

 Serial.println(host);

 // Use WiFiClient class to create TCP connections

 WiFiClient client;

 const int httpPort = 80;

 if (!client.connect(host, httpPort)) {

 Serial.println("connection failed");

 return;

 }

 // We now create a URI for the request

 String url = "/input/";

 url += streamId;

 url += "?private_key=";

 url += privateKey;

 url += "&value=";

 url += value;

 Serial.print("Requesting URL: ");

 Serial.println(url);

 // This will send the request to the server

 client.print(String("GET ") + url + " HTTP/1.1\r\n" +

 "Host: " + host + "\r\n" +

 "Connection: close\r\n\r\n");

 unsigned long timeout = millis();

 while (client.available() == 0) {

 if (millis() - timeout > 5000) {

 Serial.println(">>> Client Timeout !");

 client.stop();

 return;

 }

 }

 // Read all the lines of the reply from server and print them to Serial

 while(client.available()){

 String line = client.readStringUntil('\r');

 Serial.print(line);

 }

 Serial.println();

 Serial.println("closing connection");

}

Or if you need to make a server in your network, you can try ESP8266 Arduino Wifi Server

example program:

/*

 * This sketch demonstrates how to set up a simple HTTP-like server.

 * The server will set a GPIO pin depending on the request

 * http://server_ip/gpio/0 will set the GPIO2 low,

 * http://server_ip/gpio/1 will set the GPIO2 high

 * server_ip is the IP address of the ESP8266 Arduino module, will be

 * printed to Serial when the module is connected.

 */

#include <ESP8266WiFi.h>

const char* ssid = "your-ssid";

const char* password = "your-password";

// Create an instance of the server

// specify the port to listen on as an argument

WiFiServer server(80);

void setup() {

 Serial.begin(115200);

 delay(10);

 // prepare GPIO2

 pinMode(2, OUTPUT);

 digitalWrite(2, 0);

 // Connect to WiFi network

 Serial.println();

 Serial.println();

 Serial.print("Connecting to ");

 Serial.println(ssid);

 WiFi.begin(ssid, password);

 while (WiFi.status() != WL_CONNECTED) {

 delay(500);

 Serial.print(".");

 }

 Serial.println("");

 Serial.println("WiFi connected");

 // Start the server

 server.begin();

 Serial.println("Server started");

 // Print the IP address

 Serial.println(WiFi.localIP());

}

void loop() {

 // Check if a client has connected

 WiFiClient client = server.available();

 if (!client) {

 return;

 }

 // Wait until the client sends some data

 Serial.println("new client");

 while(!client.available()){

 delay(1);

 }

 // Read the first line of the request

 String req = client.readStringUntil('\r');

 Serial.println(req);

 client.flush();

 // Match the request

 int val;

 if (req.indexOf("/gpio/0") != -1)

 val = 0;

 else if (req.indexOf("/gpio/1") != -1)

 val = 1;

 else {

 Serial.println("invalid request");

 client.stop();

 return;

 }

 // Set GPIO2 according to the request

 digitalWrite(2, val);

 client.flush();

 // Prepare the response

 String s = "HTTP/1.1 200 OK\r\nContent-Type: text/html\r\n\r\n<!DOCTYPE
HTML>\r\n<html>\r\nGPIO is now ";

 s += (val)?"high":"low";

 s += "</html>\n";

 // Send the response to the client

 client.print(s);

 delay(1);

 Serial.println("Client disonnected");

 // The client will actually be disconnected

 // when the function returns and 'client' object is detroyed

}

And in the last example an ESP8266 Arduino WiFi Access Point which hosts a web server is

created:

/* Create a WiFi access point and provide a web server on it.

ESP8266 Arduino example

 */

#include <ESP8266WiFi.h>

#include <WiFiClient.h>

#include <ESP8266WebServer.h>

/* Set these to your desired credentials. */

const char *ssid = "ESPap";

const char *password = "thereisnospoon";

ESP8266WebServer server(80);

/* Just a little test message. Go to http://192.168.4.1 in a web browser

 * connected to this access point to see it.

 */

void handleRoot() {

 server.send(200, "text/html", "<h1>You are connected</h1>");

}

void setup() {

 delay(1000);

 Serial.begin(115200);

 Serial.println();

 Serial.print("Configuring access point...");

 /* You can remove the password parameter if you want the AP to be open. */

 WiFi.softAP(ssid, password);

 IPAddress myIP = WiFi.softAPIP();

 Serial.print("AP IP address: ");

 Serial.println(myIP);

 server.on("/", handleRoot);

 server.begin();

 Serial.println("HTTP server started");

}

void loop() {

 server.handleClient();

}

